covariance function meaning in Chinese
积差函数
协方差函数
Examples
- According to the statistic characteristic of covariance function , parameter estimation can be given for kernel function
由协方差函数的统计特征,可给出核函数的参数估计。 - If the covariance stationary processes are one dimension , for given data , covariance function and spectral density function can be estimated , and there is no need to select kernel function and its parameters
如果协方差平稳随机过程的状态是一维的,对给定的样本点,给出了协方差函数的估计和其对应谱(密度)函数估计,而不必选择核函数及其参数。 - For the given sample points , and matrix formed by covariance function with sample points as parameters , when the number of sample points approaches infinite , it is proven that this matrix spectrum will approach the spectral approach theorem for positive - definite kernel of integral equation
对给定的样本点,由样本点为变量的协方差函数构成的矩阵,当样本点个数趋于无穷大时,证明此矩阵谱逼近于积分方程正定核的谱逼近定理。 - According to the markov approximation under a long haul condition , we get the inter - correlation function , log - amplitude and phase covariance function . the thesis puts much emphasis on three phenomenon of the laser under the effects of turbulence , i . e . , intensity fluctuation ( atmosphere glistening ) , beam floating and extension , phase fluctuation
重点介绍湍流作用下的激光的三种物理现象及其产生机理,即强度起伏(大气闪烁) ,光束漂移和扩展,相位起伏和到达角起伏。 - We proof the covariance function of covariance stationary processes is equivalent with mercer kernel function . that is , the covariance function of covariance stationary processes is a mercer kernel function ; in reverse , for a given mercer kernel function , there exists a covariance stationary processes , and the covariance function corresponded to this covariance stationary processes is the given symmetry positive - definite kernel function . it means that the covariance function is equivalent to symmetry positive - definite kernel function
首先建立了协方差平稳过程的协方差函数与积分方程中对称正定mercer核函数的等价关系,即协方差平稳过程的协方差函数是对称正定mercer核函数,反过来,对给定的对称正定核函数,证明了存在协方差平稳过程,使得此协方差平稳过程对应的协方差函数恰好为给定的对称正定核函数,这说明协方差函数和对称正定核函数是等价的。